Computer Science Problems in Astrophysical

Simulation

Richard Anderson

Abstract

This paper presents a survey of current work on
N-body simulation in astrophysics. The goals of
the paper are to present several computer science
problems that arise in N-body simulation, and to
show how cross disciplinary collaboration can enrich
computer science.

1 INTRODUCTION

A major challenge to Computer Science 1s to suc-
cessfully collaborate with other science and engi-
neering disciplines. In the last three decades, Com-
puter Science has built its foundations, with dra-
matic advances in fields as diverse as Theory, Arti-
ficial Intelligence, Computer Architecture, and Pro-
gramming Languages. However, during this period
of growth, the emphasis has been inward, to build a
discipline, as opposed to looking outward, to apply
techniques to problems encountered by other scien-
tists and engineers.

In this paper, I discuss first hand experience from
a collaborative project between Astronomers and
Computer Scientists at University of Washington.
The project is to study astrophysical simulation
algorithms and to implement them on high per-
formance parallel computers. The basic goals of
this paper are to present the Computer Science
problems that arise out of this work, and to argue
that this type of collaboration yields many bene-
fits to Computer Science. (It is hoped that the As-
tronomers will also argue that they benefit from this
type of collaboration.)

2 Collaboration

Many forces are pushing collaboration between
Computer Science and other disciplines. First and
foremost there is the intellectual argument that this
collaboration will be mutually beneficial and will

advance all of the involved disciplines. This argu-
ment is being formally made by organizations such
as the National Research Council [1]. Currently,
at least in the United States, funding opportunities
such as the HPCC Initiative are promoting collabo-
rative ventures. Collaboration with an application
discipline is often necessary if one want to have ac-
cess to state of the art high performance computers
since the machines are now way to expensive for a
single academic unit to afford.

In spite of the forces encouraging collaboration,
there are many difficulties to overcome to engage
in a successful collaboration. First of all, there is
a very large overhead in starting work in a differ-
ent discipline. The overhead of starting work in-
cludes both learning the basics of the science, as
well as overcoming a language and culture gap be-
tween fields. Another difficulty in starting a collab-
oration is to have accurate expectations about the
role of the collaborators, and to understand how ev-
eryone involved can contribute to the goals of the
project. A final difficulty is to make sure that the
project is one in which collaboration is possible.
There are many computational problems which are
already well solved, so that improved performed is
only a question of accessing greater resources. In
this case, there may not be computer science prob-
lems to solve, so the collaboration may be unwar-
ranted. Another issue in collaboration is to ensure
that all members have an opportunity to gain credit
for the work. In the standard academic currency,
this means that results of the work have to be pub-
lishable. The key issue is where these results will be
published, since 1t 1s critical to be able to publish
in ones own field.

This work is part of the University of Wash-
ington project on Astrophysical Simulation. The
project includes eight faculty members from As-
tronomy, Physics, Applied Mathematics and Com-
puter Science, as well as four post doctoral research
associates. The project is currently funded as a

NASA HPCC grand challenge project. Although

www.manaraa.com

the project is only one year old, it has been very
successful in building ties between fields and in es-
tablishing a high level of interaction. The project
centers around the development of several differ-
ent simulation codes, with a strong emphasis on
parallel implementation. This paper will stress the
computer science side of the project and will not dis-
cuss the astrophysical problems that will be studied
through simulation.

3 Astrophysical Simulation

Particle simulation is widely used in many scien-
tific and engineering disciplines, including chem-
istry, material science, bioengineering, and mechan-
ical engineering. The technique is used to comple-
ment experiment and observation. Astrophysical
simulation generally involves following the time evo-
lution of a set of particles under gravitational force.
The particles often correspond to the aggregation of
a large number of stars. Simulation is particularly
important to astrophysics because the time and dis-
tance scales involved make many observations diffi-
cult and experiment 1impossible. The difficulties in
observation are that it 1s difficult to determine the
distance of far away objects such as galaxies, so that
we essentially have a two-dimensional view, and the
time scales involved are so vast, that we essentially
only have a snap shot of the universe, and cannot
view objects moving through time.

The basic algorithm is to compute the force on
each particle and then advance the particles assum-
ing constant force for a small amount of time. The
problem of computing the force on each particle is
generally referred to as the N-body problem.! In
many applications of simulation, it is necessary to
use a very large number of particles to accurately
reflect the physics of the problem. The current state
of the art is to perform simulations involving about
twenty million particles using the largest parallel
computers. Astrophysicists argue that qualitatively
different problems will be able to be studied if the
number of particles can be increased by one or two
orders of magnitude.

1However, in the case of small N, notably two and three,
the N-body problem may refer to the problem of computing
the equations of motions for the bodies. In the case of two,
Newton showed that the motion is an ellipse. The problem of
computing the equations of motion for three bodies appears
to be intractable.

3.1 N-body Problem

The N-body problem is: given a set of particles
with masses and positions, determine the force upon
each particle, assuming gravitational interaction be-
tween particles. Since gravitational force obeys an
inverse square law, the problem is to compute the

sum:
gmgms;

Fi = Z 7L
i Nz =zl
where f]\l denotes the unit vector from z; to z;.
The force on a single particle can be computed in
O(n) operations,? so computing the force on all par-
ticles can be done by a straightforward O(n?) time
algorithm.

The improvement over an O(n?) algorithm comes
from computing approximate forces instead of ex-
act forces. As we discuss later, the basic method of
approximation is to aggregate particles and to ap-
proximate the effect of a collection of particles by
a single computation. Although it is important to
pay attention to the accuracy of the approximation,
it 1s not necessary to evaluate the forces to a very
high level of accuracy. The reason for this is that
there are several other sources of error in the simula-
tion process, so that a highly accurate evaluation of
forces does not increase the overall accuracy of the
simulation. The integration process i1s one source
of error, since forces are assumed constant during a
time step. The other major source of error is that
a physical system is often represented by a much
smaller number of particles than it actually con-
tains, so each particle in a simulation corresponds
to a large number of real particles. This model-
ing error 1s often the factor the limits the utility of
simulation, and it also motivates the use of larger
numbers of particles.

3.2 Application of Simulations

Many different problems in astrophysics are ad-
dressed by simulations. These simulations can clas-
sified roughly into two categories, large scale and
small scale. The distinction is that a large scale
simulation 1s aimed at understanding the structure
of the Universe as a whole, while a small scale simu-
lation studies the behavior of a specific system. The
type of problem that is studied by large scale sim-
ulation is one such as galactic clustering, where the

2We are assuming infinite precision operations to claim
an O(n) bound. Since the simulation algorithms are gener-
ally done at a low precision, the issue of solving the N-body
problem to a high level of accuracy does not arise.

www.manaraa.com

major questions include understanding the overall
distribution of galaxies in the universe, and relat-
ing internal structure of galaxies to the large scale
structure. Examples of smaller systems which are
studied by simulation include the collision of galax-
ies and the mass exchange between orbiting white
dwarf stars[2].

One of the key technical challenges in simulation
arises from the necessity of using a large number of
particles. The largest reported simulations (as of
June, 1992), involve following the evolution of 17
million particles over 600 time steps [3]. The simu-
lations were performed by Salmon and Warren us-
ing the 512 processor Intel Touchstone Delta (i860).
The simulations ran in roughly 24 hours. These
simulations were very large scale simulations where
each particle represented over 10'° solar masses,
and each time step corresponded to over 10 million
years. Smaller “routine” simulations run by astro-
physicists may involve one million particles and run
for one month on a fast workstation [4].

The reason that astrophysical simulations require
such a large number of particles to achieve accu-
rate results is that the problems involved have a
very large dynamic range. This means that interest-
ing events simultaneously occur on many different
length scales. The type of problem where different
length scales occur is in looking at galactic cluster-
ing. The galaxies are very widely distributed, and 1t
is of interest to be able to see the internal structure
as well. This means that there must be a sufficient
number of particles in each galaxy to allow its fea-
tures to emerge, and enough galaxies to model the
large scale distributional effects. It is generally be-
lieved that increasing the number of particles by one
or two orders of magnitude will allow qualitatively
different physical problems to be studied.

4 N-body Algorithms

A rich set of methods have been developed which
improve on the basic n? algorithm for the N-body
problem. Currently, a set of methods, referred to
as tree-codes are the most popular for large scale
simulations. These were independently discovered
and developed by a number of researchers.

4.1 Analog algorithm

The history of N-body algorithms dates back to a
truly remarkable paper published in 1941[5]. In

this paper, Erik Holmberg, a Swedish physicist de-
scribed an analog method for N-body simulation.
His idea was to replace gravitational force with
light, since both light and gravity obey an inverse
square law.

Holmberg was interested in studying tidal distur-
bances caused by nebulae passing in close proxim-
ity to one another. He dismissed numerical inte-
gration as being computationally infeasible. The
specific system that he considered was two nebulae,
consisting of 37 bodies each, so a single time step
would have required computing 2,701 square roots,
which would have been a tremendous amount of
work without a calculator. The experimental sys-
tem that Holmberg used was a collection of 74 light
bulbs set up on a board. The light bulbs were re-
placed one at a time by a light meter to determine
the forces. By measuring the light intensity in the
4, —x,4+y and —y directions the force could be
determined. Particular care was taken with the ex-
perimental set up, for example, special light bulbs
were manufactured with a vertical spiral filament
to ensure that the light was uniform in all direc-
tions. The paper also discussed how errors such as
reflected light from the table surface were measured
and dealt with.

4.2 Mesh Algorithms

The first computational method which gave a sub-
stantial improvement over direct computation was
to use a mesh[6]. In this method, each particle is
moved to the closest grid point. The force computa-
tion becomes a convolution which can be done with
a FFT. This reduces the complexity of the compu-
tation to M log M where M is the number of grid
points used. The main drawback to this method
is the grid, which determines the resolution of the
simulation. One of the main characteristics of as-
trophysical simulations is that they involve a very
non-uniform distribution of mass so a large range
of resolution is important. A number of approaches
have been taken to improve upon the mesh algo-
rithms, including hybrid methods which use direct
computation for close interactions, and the mesh
computation for long range interaction, and multi-
grid techniques which allow varying the mesh size.

4.3 Tree-codes

The current method of choice for astrophysical sim-
ulation is to approximate the force on each particle

www.manaraa.com

with the aid of a geometric data structure. Imple-
mentations of this method are often referred to as
tree-codes. The method was independently discov-
ered by several researchers. The particular version
that is most commonly used is the Barnes-Hut al-
gorithm [7].

The starting point for the tree codes 1s to use a
natural approximation in computing the force. Sup-
pose that we want to compute the force exserted by
a set of particles S = {p1,...,pr} on a particle z. If
all of the particles in S are far away from x, then it
is natural to replace the set of particles S by a single
particle located at the center of mass, and assign all
of the mass to this particle. A more accurate ap-
proximation can be achieved by using a multipole
expansion around the center of mass instead of just
the single term. One of the important details in
the algorithm is to decide when the particle is suf-
ficiently far away so that the approximation can be
used.

The spatial data structure that is used is a tree,
where a set of particles is associated with each of the
tree nodes. The data structure obeys the following
three properties:

1. The entire set of particles is associated with the
root.

2. The children of a node T represent a partition
of the particles associated with 7.

3. Each leaf has at most one particle associated
with it.

In principle, any tree that satisfies the properties
could be used. However, it is important that the
tree decomposition reflects the spatial distribution
of particles. Many of the methods that are used
are based upon recursively decomposing space, and
assigning all of the particles in a spatial region to a
tree node.

The basic algorithm to compute the force on a
particle p can be expressed as the following recursive
procedure. We assume that there are subroutines
for computing the force and testing if the approxi-
mation is valid. For clarity of expression the tree is
assumed to be binary.

Fvaluate(p : ParticleType, T : TreeNode)
if IsLeaf(T)
return EzactForce(p, T);
if FarAway(p, T)
return ApprozForce(p, T);
return Evaluate(p, T left) + Fvaluate(p, T.right)

The simulation algorithm is to compute the force
upon each particle using the routine Evaluate. The
run time to compute the force on a particle is pro-
portional to the number of nodes that are expanded.
An important aspect of a tree-code is that it relies
on performing particle-cluster computations. We
discuss methods which allow cluster-cluster compu-
tations below.

Opening criterion One of the important sub-
routines of the algorithm is the test as to whether
or not the approximation by a region is sufficiently
accurate. This is often called the opening criterion,
since it is used to decide if a node should be ex-
panded. The basic condition for using the approx-
imation for the set of particles S to compute the
force on z 1s that all points in .S are far away from
x. The standard way to implement this is to look
at the ratio between the size of .S and the distance
from z to S. In the Barnes-Hut algorithm, each
point set is enclosed in a cube. If s is the length of
the cube side, and r is the distance from # to the
center of mass of S, the approximation i1s used if
& < 8, where is an input parameter that controls
the accuracy. Many simple variants of this could
be used, for example, the size of the point set could
be measured by its diameter (in either the L, or
Lo norms), and the distance to the point set could
be measured by the distance from z to the bound-
ary of S or to the closest point of .S instead of to
the center of mass. Salmon and Warren [8] consider
other choices including methods which take into ac-
count the magnitude of the errors in using various
approximations.

Data Structures There is a tremendous flexibil-
ity in the choice of spatial data structure that could
be used in the algorithm. To enhance the accuracy
of the computation, it is important the the regions
have roughly the same size in all directions. It is
also desirable that the regions chosen reflect the ge-
ometry of the point set. The methods that are in
current use can be divided into top down structures,
which recursively divide the space into regions us-
ing planes parallel to the coordinate axes and bot-
tom up methods which recursively combine close
together particles to form clusters.

The Barnes-Hut algorithm uses the oct-tree data
structure. The point set is assumed to lie inside
a cube. The oct-tree is constructed by recursively
subdividing the cubes into eight subcubes, splitting
at the geometrically central point. The subdivi-

www.manaraa.com

sion continues until cubes contain fewer than two
particles. Other data structures, including & — d
trees, used by Appel [9], and fair-split trees, pro-
posed by Callahan and Kosaraju [10], choose sepa-
rating planes based upon the point set, where the
subdivision does not necessarily create equal sized
regions.

The bottom up up approach aims at grouping to-
gether points in a way that reflects the geometry of
the particles. Independently, Benz et al. [2] and
Jernigan and Porter [11] gave schemes where close
together points are combined to form clusters. Al-
though these data structures are much less under-
stood than the top down approaches, they appear
to perform well in practice [12].

Performance Although the performance of the
particle-cluster algorithms is generally character-
ized as O(nlogn), the actual run time does depend
upon the distribution of the points. Since the force
on a particle 1s computed by traversing a tree from
the top, down to some of the leaves, the tree height
appears in the run time. The height of an oct-tree
can be unbounded in terms of the number of parti-
cles, since the division into regions does not neces-
sarily subdivide the points®.

We prove that the run time of the Barnes-Hut
algorithm is related to the average depth of leaf
nodes. If the tree is balanced, the average depth is
O(logn), which gives the O(nlogn) bound which is
generally claimed for the algorithm. The proof is
to bound the amount of work done in terms of the
cells that are examined. The total leaf depth of a
tree 1s the sum over all of the leaves of their depths.

Lemma 1 Let x be a particle. The number of cells
of size D encountered when evaluating x s bounded
by a constant.

Proof: The number of cells of size D encountered
1s at most the number of cells which can be direct
descendants of cells of size 2D which fail the accu-
racy test. Let C' be a cell of size 2D, and suppose
the distance of the center of mass of C' to z is r.
C fails the accuracy test if % > @. The number
of cells which fail the accuracy test is bounded by
the number of disjoint cells of size 2D that can be
placed so that their centers of mass are within dis-
tance % of x. This is bounded by the number of

3However, in actual simulations the problem of unbal-
anced trees is not overwhelming. One reason is that the
pathological cases require tremendous precision, so they can-
not occur when fixed precision arithmetic is used.

cells of size 2 which can be placed inside a sphere
of radius %—i—?D\/g which is constant. ||

We also need a related lemma, which bounds how
many times a particular cell can be examined by
particles in larger cells.

Lemma 2 Let C be a cell of size D. The number
of particles x located in leaf cells of size D' > D
which encounter C' is bounded by a constant.

Proof: A particle can only encounter ' if C’s par-
ent fails the accuracy test. This means that x must
be within distance % of C'. The leaf cells are dis-
joint. By a straightforward packing argument, the
number of cells of size at least 2 within distance

% is bounded by a constant. |

Theorem 1 Let T be an oct-tree total leaf depth
L. The Barnes-Hut algorithm takes time O(L) on
mput T to compute the force on all of the particles.

Proof: The two lemmas allow us to account for all
of the work. Let x be a particle that is in a leaf cell
of size D. We account separately for the work that
z does in looking at cells of size D or greater, and
the work done at looking at cells of size less than D.
Suppose that is at depth k in the tree. The first
lemma says that O(k) work is done looking at cells
of size at least . The second lemma says that
each cell is evaluated at most a constant number
of times by particles in larger cells, so this gives a
linear amount of work summed over all cells. The
total amount of work is thus proportional to the
total leaf depth.

It is of interest to look more carefully at the con-
stants. The proof of the first lemma gives a constant

of

33—27 HLS + ?’gﬁ + 2 +3V3] .

For large values of #, when @ is relatively close to
one, the bound is pessimistic. For example, when
f = 1, the bound is 683, while a direct bound for
f = 1 gives a constant of 216. The bounds make
a worst case assumption about the location of the
center of mass in each cell. If the center of mass is
in the center of each cell, then the bound improves
to 64 when @ = 1. The large branching factor of
the tree and the cubic dependence on @ cause the
constant to be so large.

www.manaraa.com

4.4 Fast Multipole

It is possible to gain a theoretical improvement in
N-body algorithms by allowing cluster-cluster ap-
proximations instead of just particle-cluster opera-
tions. Appel [9] introduced the use of cluster-cluster
operations, and Greengard and Rokhlin [13] showed
how the operations could be used to achieve high
accuracy in linear time.

The idea for cluster-cluster evaluations is that
if there are point sets A and B, which are well-
separated, then a single force computation can be
done between the sets. Appel’s approach was to
compute the acceleration assuming all mass was
concentrated at the center of mass, and then use
that acceleration for all of the points in each set.
The Greengard-Rokhlin method is far more sophis-
ticated. In their method they translate the force
field of B so that it applies to the domain of A. This
is done by using several Taylor series expansions.
Once the acceleration is computed for a region, it is
passed down the tree towards the leaves which cor-
respond to the particles. In the Greengard-Rokhlin
algorithm, the values which are passed down the
tree are actually functions, which are evaluated at
the particle’s position.

The run time for the cluster-cluster algorithms
is generally considered to be O(n), however, this
is under some assumptions about the distributions
of the particles. In particular, if the particles are
very highly concentrated, the trees can have a large
depth, which adds additional cost to the algorithm.
The basic argument used to establish linear time is
to argue that each cell can be involved in only a
constant number of evaluations. This is done with
a packing argument that is similar to the lemmas
established above. If the Greengard-Rokhlin algo-
rithm is also parameterized by the output precision,
then it is possible to achieve linear time.

Although the Greengard-Rokhlin algorithm is
theoretically superior to the Barnes-Hut algorithm
and the other tree-codes, it is not widely used for
astrophysical simulation. The main reason for this
is that the constant factors are large in the algo-
rithm, and the equations used in the evaluation
are very complicated. In order for the force ap-
proximation to be valid, the clusters must satisfy
a well-separated property, which is that the ratio
of the separation and the cell radii must exceed a
constant. In the three dimensional algorithm, to
evaluate a cell of size D, all D cells in a cube of
diameter 91 must be examined, which is 729 cells

[14]. The force evaluation is also very expensive. In
two dimensions, the coordinates can be represented
with complex numbers, which greatly simplifies the
computation of the functions. In three dimensions,
a different technique, such as spherical harmonics 1s
necessary [15].

The fast multipole method is well suited for the
case where high accuracy is required. Although it
has large constant factors, additional accuracy is
available at relatively low cost. However, astrophys-
ical simulation generally requires only low accuracy,
so the overhead of the fast multipole algorithm lim-
its its utility.

4.5 High performance computing

Since large N-body simulations have such high com-
putational demands, they have been natural ap-
plications for the most powerful computers. The
initial implementation on supercomputers were on
vector machines. The control structure of the N-
body algorithms, made 1t a substantial challenge to
get good performance on machines such as Crays,
but eventually vectorized codes were developed.
Currently, the main interest in implementation is
achieving high performance on large parallel ma-
chines. The largest simulations that have been
run [3] utilized the 512 processors Intel Touchstone
Delta.

The N-body problem potentially has a large
amount of work that can be done independently
and in parallel, especially when the number of par-
ticles is much larger than the number of available
processors. However, there are a number of prob-
lems that must be solved to achieve high efficiency.
The problem that has been the most challenging has
been to implement the algorithm on a distributed
memory machine. It is necessary to have methods
which associate the data with specific memories and
allow convenient access by other processors. Solv-
ing this problem means not only solving the effi-
ciency problem on a particular machine, but also
addressing implementation and portability issues.
A secondary problem to solve i1s the load balanc-
ing problem, which is to make sure that all proces-
sors remain active. Both of these problems have
been addressed in a number of implementations,
and good performance has been achieved on sev-
eral different machines. Machine utilization of over
80% has been reported on hypercubes [16], and on
the Stanford Dash [17].

www.manaraa.com

4.6 What is left to be done?

Physicists desire to perform simulations which are
orders of magnitude larger than what is feasible to-
day. Today’s simulations are limited both in terms
of total processing power (the speed and number
of processors), as well as by the available mem-
ory. Larger simulations will be enabled by access to
larger and faster machines. However, there is also a
major role that computer scientists can play in mak-
ing these large simulations possible. Improved un-
derstanding of simulation algorithms will increase
confidence in results, and will also allow resources
to be concentrated upon the parts of the simulation
which are most sensitive in errors. There are op-
portunities to improve the performance of the algo-
rithms. Even constant factor improvements in the
algorithms will be important in increasing the size
of problems which can be addressed. Finally, there
are many open computer science problems which
relate to high performance computing in general.
These include problems such as developing meth-
ods for portable parallel programs and developing
support software for scientific applications.

5 Errors in Simulation

The fundamental concern when working with simu-
lation is the degree of correspondence between the
simulation and a real system. There are certain
constraints, such as energy conservation which are
easily checked. These either give confidence in the
accuracy of a simulation, or establish that the sim-
ulation is not correct. It is generally easier to show
that a simulation is incorrect than to establish its
correctness. If the simulation exhibits any nonphys-
ical behavior, then it is necessarily suspect. How-
ever, the fact that a simulation gives the expected
results on test cases, does not guarantee that it will
be correct when applied to new situations.

Errors in simulation can be either caused by hav-
ing too large a granularity, or can be systematic
errors in the algorithm. Granularity errors include
having too few particles in the system, having a
timestep that is too big, or using an approxima-
tion threshold that i1s too weak. Systematic errors
are a very big concern, since they indicate that the
method 1s flawed. In this section three problems
are mentioned which have come up in simulation
algorithms. The reason for discussing these cases
is to show the importance of understanding what
the simulations are computing, as opposed to just

concentrating on the performance of the simulation.

5.1 Disk heating

One problem that was observed in early simulations
was that galaxies gradually disappeared.* This has
been termed the “Disk heating problem”, since is is
caused by particles being accelerated and ejected.
The problem arises from performing integration
with respect to the T% gravitational force. Numer-
ical integration i1s performed by treating a force as
constant throughout a timestep. If a particle is
passing close to another one, and if the force is mea-
sured when the particles are very close together,
then there is a large acceleration, while if the force
1s measured at a different point in the trajectory,
the acceleration would be much slower. The prob-
lem comes from the accidental measurement of very
close encounters causing large accelerations. To fix
this, the T% gravitational force 1s “softened”, and
replace by another force law, such as TQ? for some
€ > 0. This solution appears to be ad hoc, although
it does give more accurate simulations.

5.2 Error bounds

The error bounds chosen in simulations are sur-
prisingly weak. Generally, the parameter # in the
Barnes-Hut algorithm is chosen in the range 0.7 to
1.0. The accuracy of the force is only guaranteed
to be within about 30% of the real force. The force
computation is the sum of a number of terms, so if
errors were uniform and independent, then the ac-
curacy would increase because of a cancellation of
errors. The errors are not independent, and there
is also conditioning between time steps, so a central
limit theorem approximation is not valid. It is prob-
ably not possible to formally derive a distribution
on the errors, although they have been observed
to satisfy reasonable statistical properties [12]. A
worst case analysis, which assumes a conspiracy of
errors, yields an overly pessimistic bounded. Moti-
vated by the needs to run large simulations, physi-
cists will continue to run simulations outside the
range where error analysis gives reasonable bounds
on the accuracy.

4 Galaxies would disappear in under one billion years of
simulated time, while real galaxies have existed for ten billion
years.

www.manaraa.com

5.3 Exploding galaxies

Salmon and Warren [8, 16] have documented a sys-
tematic error arising in the Barnes-Hut algorithm.
The problem arises when a small galaxy collides
with a larger galaxy. As the smaller galaxy ap-
proaches, it loses self gravitation and falls apart.
What is especially peculiar is that this occurs when
the small galaxy approaches at 45 degrees (on the
line y = x), but does not occur when it approaches
along the z-axis. This problem was discovered in
actual simulation, as opposed to being contrived to
show fault with the algorithm.

The problem is a “corner effect” that occurs when
the bulk of the mass i1s located at the corner of a
cell, and it depends upon the specific opening crite-
rion used in the Barnes-Hut algorithm. There are
many ways to solve this problem, such as requir-
ing a lower error threshold (6 < \/Lg) or by modi-
fying the opening criterion. The unsettling aspect
of this problem is not that it is difficult to deal
with, but that the problem had been in codes that
had long been used as production codes for astro-
physical research. There is no guarantee that there
are no other pathologies in the Barnes-Hut or other
algorithms which will cause physically incorrect re-
sults. It clearly is not possible to develop a set of
benchmark simulations which are sufficient to vali-
date simulation algorithms.

6 High Performance Com-

puting

A major challenge 1s to make effective use of high
performance computers in executing the existing al-
gorithms for N-body algorithms. The word effective
is used to indicate a wide range of issues; perfor-
mance is of critical importance, while issues such
as ease of implementation and portability between
machines are also very important. Researchers are
seeking general solutions to many problems in high
performance computing. The N-body problem has
become a popular application to study [18] since it
has a less regular structure than many other sci-
entific applications, and hence requires more gen-
eral solution techniques. (One concern about the
computer science work that uses the N-body prob-
lem as a benchmark is that it is concentrating on
the Barnes-Hut algorithm. N-body algorithms are
evolving to have less regularity than Barnes-Hut,
so solutions proposed might not be sufficiently gen-

eral. It is important for Computer Scientists to keep
abreast of the advances of simulation algorithms.)

6.1 Parallelization

There are currently a range of different architec-
tures used for high performance computers. Some
of the i1ssues in parallelization differ between classes
of machine. Researchers are seeking solutions to
these problems that apply to as wide a range of
machines as possible.

The instances of the N-body problem that arise
in astrophysics generally provide a large amount of
work that can be done in parallel, so the problem
is to take advantage of existing parallel work was
opposed to finding a new algorithm with enough
parallelism. In current algorithms, almost all of the
work is done in actual force computation with con-
struction of the tree data structure being only a
small amount of the work. (Salmon [16] gives the
cost of tree construction as only 2% of the sequen-
tial run time.) The load balancing problem is to
assign the particles to the processors, so that each
processor performs approximately the same amount
of work. This can be done in either a static or
a dynamic manner, where a static method divides
the work before the computation and a dynamic
method can reallocate work to keep all processors
busy. Static schemes that have been used for the
N-body problem include a top down method, Or-
thogonal Recursive Bisection [16] and a bottom up
method, Costzones [19]. One idea that works well
in load balancing is to keep track of the amount of
work per particle done in each time step, and use
it as an estimate of the work when load balancing
is done. The load balancing problem is relatively
well solved for current N-body algorithms, so the
current challenges are to develop general methods
which apply to large classes of applications.

A second problem in parallelization is to assign
the data structure to memory. The characteristics
of this problem depend strongly upon the type of
machine that is being considered. If the machine is
a distributed memory machine, then the problem is
to choose where the data goes to minimize commu-
nication costs. On the other hand if the machine is
a shared memory machine, where memory manage-
ment is not under user control, the problem is to
ensure that the memory system can take advantage
of data locality to achieve reasonable performance.
In the N-body problem, the key is to map the spa-
tial decomposition tree to memory. The problems

www.manaraa.com

include making sure that each particle has access
to all relevant portions of the tree, and determining
which processor is responsible for updating each of
the tree nodes.

One direction of research is to develop system
level solutions to problems such as load balancing
and memory mapping instead of user level solutions.
Reasons for doing this include a desire to avoid solv-
ing the problem for each application, a system level
solution could interact with other system level func-
tions, such as job scheduling, and a system level so-
lutions could use facilities not normally available at
user level.

6.2 Abstraction

The sequential version of the Barnes-Hut algorithm
is elegantly expressed in terms of tree traversal.
This leads to convenient implementation in lan-
guages which support pointer manipulation.® How-
ever the sequential abstractions are not sufficient
for parallel implementation, especially when a mes-
sage passing machine 1s in use. The most difficult
problem is to ensure that each processor has access
to all necessary parts of the tree. This 1s a very
difficult implementation problem. For example, the
solution to this problem was the most complicated
part of the Salmon implementation [16]. The prob-
lem is easily solved on a shared memory machine
[17]. This specific example is used by proponents
of shared memory in the on going discussion of the
relative merits of shared memory versus message
passing.

A major step in developing abstractions for tree
codes on message passing machines was taken by
Bhatt et al. [20]. They propose a pair of abstrac-
tions, Traverse and Deliver, which lead to a concise
implementation of the Barnes-Hut algorithm. The
key mechanism is to define a tree traversal which
prompts the delivery of messages to the originating
processors. This type of implementation requires li-
brary routines to be written which support message
passing and parallelism. The user is not exposed
to any of the details of the machine. There are
very strong arguments for this style of implementa-
tion based upon software engineering considerations
such as portability, extensibility, and ease of main-
tenance. The one weakness of the Bhatt abstraction
is that it was designed strictly for the Barnes-Hut

5 Astrophysical simulation is a domain where scientific
programmers have abandoned FORTRAN with a preference
for C.

algorithm . It is not clear if 1t is sufficient for newer
algorithms which have different strategies for node
expansion, or allow different time scales.

6.3 Portability

A very general and difficult problem is to develop
methodologies and support software which allows
programs to be moved between different parallel
machines. It is essential that methods for porting
programs pay very close attention to the efficiency
of the resulting program. There are several ongoing
efforts, such as the Orca Project at University of
Washington [21, 22] which are developing systems
which apply to various classes of scientific applica-
tions. Again, the control structure of the N-body
algorithms make them a very interesting type of ap-
plication to study.

7 Algorithms

The most significant improvements in the perfor-
mance of N-body algorithms have come through
algorithmic innovations, and there are still many
sources of potential improvement. Algorithmic re-
search in the N-body problem aims at both finding
faster algorithms as well as gaining a better under-
standing of existing algorithms.

The key algorithmic problems turn out to be in
computational geometry and data structures as op-
posed to being in parallel computation. The reason
for this is that N-body algorithms generally have
enough inherent parallelism that it is easy to find
enough parallel work to achieve high utilization of
today’s parallel machines. For example, solving a
problem with N = 1,000,000 on a one thousand
processor machine gives an adequate grain size for
current machines. If machine sizes were to increase
substantially, and problem size were not to increase,
then parallel algorithms issues would become more
important.

7.1 Spatial Data Structures

The central part of a particle-cluster tree code is
the geometric data structure which drives the flow
of control and determines the approximation. These
algorithms must take Q(nlogn) time, so the goal is
to improve the constant factors. The constant fac-
tors are large enough that there 1s ample room for
improvement, and these codes use sufficient compu-
tational resources that even modest improvements

www.manaraa.com

in the size of the constants would be of significant
practical importance. Almost all of the work is in
the force computation, so we want to find a data
structure which reduces the number of node evalu-
ations. In the current algorithms, tree construction
is a very small amount of the run time. This means
that a more complicated tree construction strategy
may be practical if it succeeds in reducing the num-
ber of force computations.

The majority of N-body algorithms use a spatial
decomposition that is derived from a subdivision of
orthogonal planes. One of the simplest schemes is
the oct-tree which is used in the Barnes-Hut algo-
rithm. This partition scheme is oblivious to any
structure that the data might have, for example,
a separating plane might pass directly through a
tightly packed cluster. It is very likely that other
decomposition could yield better performance. The
constant factor in the Barnes-Hut algorithm is mod-
erately large. It is determined by the number of
cubical cells which intersect a fixed radius sphere
in three dimensions. This number turns out to be
alarmingly big. Cubes are not the optimal shape
of a fixed volume cell when attempting to minimize
intersections with a sphere, so it is conceivable that
a different tiling would give a better result.

There are many different directions to explore
in modifying the Barnes-Hut algorithm to improve
the constant factors. These problems could be ad-
dressed both analytically as well as experimentally.

1. Determine the constant factor in the Barnes-
Hut algorithm (as a function of §). This could
be done with respect to the average case as well

as to the worst case.

. Can better data structures be constructed us-
ing arbitrary planes, instead of restricting at-
tention to orthogonal planes?

. Does the use of bounding boxes which are tight
against the data improve oct-tree behavior?

Can a data structure which splits the points
roughly evenly, and achieves a guaranteed
O(logn) depth improve the algorithm’s perfor-
mance?

. Is the high branching factor a detriment to the
oct-tree based algorithm? Can a binary tree
lead to fewer comparisons?

. Can the theory of geometric separators [23] be
used to build better trees?

10

7.2 Nearest Neighbor Trees

An alternative to the top down approach is to build
the tree bottom up by combining close together par-
ticles. This method was independently proposed by
Benz et al. [2] and by Jernigan and Porter [11].
This method appears to be competitive with the
top down approaches [12].

We define a nearest neighbor tree to be a tree that
is formed by repeatedly collapsing mutually nearest
neighbors® until a single point is left. This naturally
gives a binary tree. We give an algorithmic defini-
tion, which gives substantial flexibility in how the
tree is constructed. A tree is a nearest neighbor
tree for a point set if it can be constructed by the
following algorithm. 7; denotes a tree which has
coordinates associated with its root.

Collapse(S = {T1,T5,...,Tn)
if N =1 then return
Let (T3, , T3, {(Tiy, Tiy)s - - {(Tigp_y, Tiyy) be mutually

closest pairs.

for j:=1to k
Replace Ti,;_,, Ti,; by a node with coordinates
corresponding to their combined center of mass
and with 75 Ti,. as its children. Update the
set S.

Collapse(S).

25—1 gy

The nondeterministic choice in which mutually
nearest neighbors are merged allows a wide range
of trees to be constructed. The choices can be re-
stricted to get smaller families of trees. For exam-
ple, the choice could be restricted to the globally
closest pair. This would make the algorithm de-
terministic, and also would make it easier to prove
structural theorems about the trees. However, it
could make the trees more difficult to construct,
and would certainly make parallel construction of
the trees harder. A weaker restriction would be to
only combine a single pair of trees. This gives a
smaller class of trees, but is a fairly natural restric-
tion. We shall use the general definition here. It
includes the classes of trees used by Benz and by
Jernigan and Porter. Many generalization of this
definition are possible, such as allowing several sev-
eral trees to be combined instead of just pairs of
trees. We defer the generalization until we have a
better understanding of the pairwise combination.

6 A pair of points = and y are mutually nearest neighbors
if is a nearest neighbor of ¥ and y is a nearest neighbor of
z. Any point set has at least one pair of mutually nearest
neighbors.

www.manaraa.com

The nearest neighbor scheme appears to work
well in practice. The motivation for the data struc-
ture is that it should adapt to the structure of the
point set, and should put clusters in the same sub-
tree. The intuition and observed behavior is that
the trees have low depth. The following heuristic
arguments suggest that the trees should have small

depth.

Pseudo-theorem 1.1 A nearest neighbor tree on
n points has O(logn) height.

Argument 1: If points are randomly distributed
than a constant fraction of the points will be in-
volved in mutual nearest neighbor pairs. These can
be collapsed, reducing the number of pairs by a con-
stant fraction, leading to logarithmic depth. [11]
Argument 2: Let 6 denote the distance from p
to 1ts nearest neighbor. Suppose p is merged with
all points within a radius of 26. The nearest neigh-
bor distance of the resulting point will be a least
26. The point p can be involved in at most a con-
stant number of mergers within this radius. Since
the nearest neighbor distance doubles, the height is
logarithmic.

Both of these arguments have several holes, how-
ever, they do provide intuition as to why the trees
should be shallow. First of all, there should be a
large number of independent nearest neighbor pairs,
and second of all, as particles are merged, the near-
est neighbor distance should increase exponentially.

The conjecture of logarithmic height is false, since
in common with the oct-tree structure, there are
distributions of points which give linear depth. The
bad case again is when points have exponentially
increasing separations, for example, if point p; had
coordinates (0, 0, 2%). If the masses are allowed to be
of exponential size, then trees of linear height can
be constructed even if the positions are bounded
by a polynomial. However, the cases with an ex-
ponential range of masses or positions are not of
much interest. It would be of interest to prove that
the tree height was logarithmic if the positions and
masses were polynomially bounder, or to establish a
logarithmic dependence on position and maximum
mass. We believe that the following conjecture is
true:

Conjecture 1.1 Lei & denote the ratio between the
mazimum and minimum separation of points, and
let M denote the total mass of the system. The
height of any nearest neighbor tree is O(logé +
log M).

11

This conjecture is turning out to be remarkably
difficult to prove. To establish that nearest neigh-
bor trees are good for simulation, we would like to
prove the following:

Conjecture 1.2 Let T be a near neighbor tree with
total leaf depth L. The approzimate n-body problem
can be solved in O(L) time using T.

The reason that this conjecture is not obviously
true is the the regions represented by the nodes are
not necessarily disjoint, so the lemmas used for oct-
trees do not apply directly.

Dimension one We have only succeeded in es-
tablishing the first conjecture for some very simple
cases. We can prove that it holds in one dimension.

Lemma 3 Let py,pa,...,pn be n points on a line.
Let 6 denote the ratio between the mazimum and
mintmum separation of points, and let M denote
the total mass of the system. The height of any
nearest neighbor tree is O(logé + log M).

Proof: The advantage of having points in a line
is that 1t is easy to characterize the intermediate
nodes. Each intermediate node is the center of mass
of an interval of points. Each intermediate node has
a mass, a distance to its left and right neighbors.
Consider a path from a leaf to the root in the tree.
The distances to the left and right neighbors and
the mass increase as we move up the tree. We argue
that at least one of these quantities increases by a
factor of at least % Suppose we are at a node p’
which is merged with p’ to form p, and without loss
of generality, p’ is to the left of p”. If the mass of
p" is greater than the mass of p/, then the mass of
p Is at least twice the mass of p/. Otherwise, p is
located close to p’ than to p’’ and the distance from
p to its right neighbor is at least % the distance
from p’ to p”. This allows us to bound the height

by 2logz,;, 6 + log M.
i

We can generalize the result to a set of n points
which lie on the radius of the circle. The key for
the result on the circle is to show that each of the
intermediate points formed is the center of mass of a
set of adjacent points along the radius of the circle.
The fact that the intermediate points correspond to
arcs provides enough structure that the result can
be proved.

www.manaraa.com

Higher dimensions Unfortunately, the ap-
proach used in the one-dimensional case does not
generalize to higher dimensions. For example, the
proof depends upon the distance of a point to its
nearest neighbor being non-decreasing. However,
this is not always true, even in two dimensions.
Suppose a point p at the origin has neighbors at
(—%, @) and (%, @) The three points form an
equilateral triangle with side length one. Assum-
ing that the neighbors of p have equal weight, when
they are merged they give a point at (0, @), de-
creasing the distance from p to its nearest neigh-
bor. In looking at related examples, it is possible

to merge points to get a point that has distance
slightly less than @ to p. It is natural to ask how
close is it possible to get a point to p, where p is sit-
uated at the origin, and initially there are no other
points in the unit circle. It appears that solving this
will be a major step towards proving the earlier con-
jectures. We conjecture that it is not possible to get
an induced point within a distance of % of p, but
give a weaker version of the conjecture.

Conjecture 1.3 Suppose that there are no points
within a distance of one of the point p. There exists
an € > 0 such that no point can get closer than € of
p as long as p is not merged with any points.

The importance of this conjecture is that it seems
to be a step in bounding the number of times a
point can merge with other points, and also suggests
a way of showing that after some fixed number of
merges, the point free neighborhood of a point must
increase.

Constructing nearest neighbor trees We
have not considered the problem of how to build
the nearest neighbor tree. Since the problem of
finding a nearest neighbor pair in a point set can
be solved in O(nlogn) time[24, 25, 10], there is an
O(n?logn) algorithm for the problem. It is very
likely that the result can be improved to O(n logn)
time. The parallel complexity is also of interest.
There is not an obvious NC algorithm for the prob-
lem, even if the tree height is logarithmic. Since
there are optimal bounds for nearest neighbors [26],
it is likely that highly efficient parallel algorithms
exist for constructing nearest neighbor trees.

7.3 Simulation Algorithms

The work on simulation has generally concentrated
on getting a good solution to the N-body problem.

However, the real problem of interest is to per-
form an accurate simulation over a moderately large
number of time steps as opposed to just quickly
and accurately evaluating forces at a single point in
time. There are advantages in preserving informa-
tion across time steps as well as in weakening the
definition of time steps.

A simulation will have a very strong correlation
between time steps. It is possible to take advan-
tage of this in many ways. The correlation can be
used in a parallel implementation to improve load
balancing and to reduce memory access costs. For
load balancing, it is often useful to use the execution
time for a particle on the previous time step as an
estimate of its execution time on the current time
step. Memory behavior can be improved by relying
on caching (either by the hardware, or in software)
to increase locality across time steps. This can be
achieved if processor allocation does not change dra-
matically between time steps. Another use of the
correlation between time steps 1s to use an incre-
mental data structure for the spatial decomposition
tree instead of rebuilding from scratch. The im-
plementation of Appel [9] and Jernigan and Porter
[11] use incremental data structures. In some cases,
such as oct-trees, the data structure construction
is so efficient that it is not necessary to use an in-
cremental version. The advantage of incremental
structures is that they give an opportunity to re-
duce the cost of using a more complicated spatial
data structure.

Another reason to look at simulation as opposed
to just the N-body computation i1s to consider
schemes which use different time scales. When inte-
gration is performed, it 1s useful to be able to adapt
the time step to the rate of change of the function.
In particle simulation, accuracy can be increased
by using a smaller timestep for closer interactions
than for far away interactions. This can be im-
plemented by only traversing a portion of the tree
during some time steps. The algorithm then be-
comes asynchronous since updates proceed at dif-
ferent rates. The use of variable time steps also
impacts the choice of data structure.

The use of variable time steps has been intro-
duced into a few astrophysical codes although the
technique is not widely used. In order to take ad-
vantage of variable time steps, it will be necessary to
develop general techniques which allow them to be
incorporated into simulation algorithms, and also to
gain a formal understanding of how they work. The
theory of simulation under variable time steps is not

12

www.manaraa.com

well developed, in fact, it 1s difficult to give a precise
statement of the problem to be solved. The problem
that the physicists want to solve is “Given a finite
(but hopefully large) amount of computer time, per-
form as accurate a simulation as possible”. Natural
ways to study this problem are to fix several of the
parameters, and then express a solution in terms of
one or two variables. For the general problem, it is
natural to treat the number of particles, the total
time period, and the error threshold as variables. A
force evaluation is to approximate the gravitational
interaction between two sets of particles given their
positions at some point in time. The general sim-
ulation problem can be expressed as “Given N, T
and @, find a set of force evaluations such that the
simulation of the N particles over 7" units of time is
within @ of the motion of the particles under exact,
continuous forces.” It would be necessary to define
a measure of the solution being close to the exact
solution, as well giving a measure of cost for the
force evaluations. Thus, the final open problem, is
to find the best algorithm!

8 Conclusion

There are a large number of interesting computer
science problems that are motivated by astrophys-
ical simulation. These include problems ranging
from how to design easily portable scientific codes
to challenging problems in computational geome-
try. These problems cannot be addressed by com-
puter scientists alone, since physical scientists have
a key role in problem formation and in the evalu-
ation of solutions. The aim of this paper was to
give an example of an area where collaboration be-
tween computer science and an application domain
1s likely to yield many interesting results. The hope
1s to attract computer scientists to look into these
problems as well as to encourage computer scien-
tists to look for other problem domains arising out
of scientific and engineering applications.

References
[1] J. Hartmanis and Herbert Lin, editors. Com-
puting the Future. National Academy Press,
Washington, DC, 1992.

W. Benz, R. L. Bowers, A. G. W. Cameron,
and W. H. Press. Dynamic mass exchange in
doubly degenerate binaries. I. 0.9 and 1.2 Mg

13

stars. The Astrophysical Journal, 348:647-667,
1990.

J. K. Salmon and M. S. Warren. Astrophysical
n-body simulations using hierarchical tree data
structures. In Supercomputing, pages 570-576,
1992.

R. Carlberg, 1993. Personal Communication.

E. Holmberg. On the clustering tendencies
among the nebulae. II. a study of encounters
between laboratory models of stellar systems
by a new integration procedure. The Astro-

physical Journal, 94(3):385-395, 1941.

R. W. Hockney and J. W. Eastwood. Computer
Simulation Using Particles. Adam Hilger,
1988.

J. E. Barnes and P. Hut. A hierarchical
o(nlogn) force-calculation algorithm. Nature,

324:446-449, 1986.

J. K. Salmon and M. S. Warren. Skeletons
from the treecode closet. Technical report, Los
Alamos National Laboratory, 1992.

A. W. Appel. An efficient program for many-
body simulation. SIAM Journal of Scientific
and Statistical Computing, 6:85-103, 1985.

P. B. Callahan and S. R. Kosaraju. A de-
composition of multi-dimensional point-sets
with applications to k-nearest-neighbors and
n-body potential fields. In Proceedings of the
24th ACM Symposium on Theory of Computa-
tion, pages 546-555, 1992.

J. G. Jernigan and D. H. Porter. A tree code
with logarithmic reduction of force terms, hi-
erarchical regularization of all variables and
explicit accuracy controls. The Astrophysical

Journal Supplement, 71:871, 1989.

J. Makino. Comparison of two different tree
algorithms. The Journal of Computational
Physics, 88:393, 1990.

L. Greengard and V. Rokhlin. A fast algorithm
for particle simulations. Journal of Computa-

tional Physics, 73:325-348, 1987.

L. Greengard. The Rapid Evaluation of Po-
tential Fields in Particle Systems. PhD thesis,
Yale University, 1987.

www.manaraa.com

[15]

[19]

[20]

[23]

F. Zhao. An O(n) algorithm for three-
dimensional n-body simulations. Master’s
thesis, Massachusetts Institute of Technology,
1987.

J. K. Salmon. Parallel Hierarchical N-body
Methods. PhD thesis, California Institute of
Technology, 1990.

J. P.Singh. Parallel Hierarchical N-body Meth-
ods and Their Implications for Multiprocessors.
PhD thesis, Stanford University, 1993. Com-

puter Systems Laboratory Technical Report
CSL-TR-93-565.

J. P. Singh, W-D. Weber, and A. Gupta.
SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News,

20(1):5-44, 1992.

J. P. Singh, C. Holt, T. Totsuka, A. Gupta,
and J. I Hennessy. Load balancing and data
locality in hierarchical N-body methods. Tech-
nical Report CSL-TR-92-505, Stanford Univer-
sity, 1992. To appear in Journal of Parallel and
Distributed Computing.

S. Bhatt, M. Chen, C-Y. Lin, and P. Liu. Ab-
stractions for parallel n-body simulations. In
Supercomputing, 1992. Reference needs to be
verified.

Calvin Lin and Lawrence Snyder. A portable
implementation of SIMPLE. International
Journal of Parallel Processing, 20(5):363-401,
1991.

Lawrence Snyder. Foundations of practical
parallel programming languages. In Proceed-
wngs of the Second International Conference of
the Austrian Center for Parallel Computation.
Springer-Verlag, 1993.

G. L. Miller and W. Thurston. Separators in
two or three dimensions. In Proceedings of the
22nd ACM Symposium on Theory of Compu-
tation, pages 300-307, 1990.

K. Clarkson. Fast algorithms for the all-
nearest-neighbors problem. In 24th Symposium
on Foundations of Computer Science, pages

226-232, 1983.

P. M. Vaidya. An optimal algorithm for the
all-nearest-neighbors problem. In 27th Sym-
postum on Foundations of Computer Science,

pages 117-122, 1986.

14

[26] P. B. Callahan. Optimal parallel all-nearest-

neighbors using the well-separated pair decom-
position. In 34th Symposium on Foundations
of Computer Science, 1993.

www.manaraa.com

