
www.manaraa.com

Computer Science Problems in AstrophysicalSimulationRichard AndersonAbstractThis paper presents a survey of current work onN-body simulation in astrophysics. The goals ofthe paper are to present several computer scienceproblems that arise in N-body simulation, and toshow how cross disciplinary collaboration can enrichcomputer science.1 INTRODUCTIONA major challenge to Computer Science is to suc-cessfully collaborate with other science and engi-neering disciplines. In the last three decades, Com-puter Science has built its foundations, with dra-matic advances in �elds as diverse as Theory, Arti-�cial Intelligence, Computer Architecture, and Pro-gramming Languages. However, during this periodof growth, the emphasis has been inward, to build adiscipline, as opposed to looking outward, to applytechniques to problems encountered by other scien-tists and engineers.In this paper, I discuss �rst hand experience froma collaborative project between Astronomers andComputer Scientists at University of Washington.The project is to study astrophysical simulationalgorithms and to implement them on high per-formance parallel computers. The basic goals ofthis paper are to present the Computer Scienceproblems that arise out of this work, and to arguethat this type of collaboration yields many bene-�ts to Computer Science. (It is hoped that the As-tronomers will also argue that they bene�t from thistype of collaboration.)2 CollaborationMany forces are pushing collaboration betweenComputer Science and other disciplines. First andforemost there is the intellectual argument that thiscollaboration will be mutually bene�cial and will

advance all of the involved disciplines. This argu-ment is being formally made by organizations suchas the National Research Council [1]. Currently,at least in the United States, funding opportunitiessuch as the HPCC Initiative are promoting collabo-rative ventures. Collaboration with an applicationdiscipline is often necessary if one want to have ac-cess to state of the art high performance computerssince the machines are now way to expensive for asingle academic unit to a�ord.In spite of the forces encouraging collaboration,there are many di�culties to overcome to engagein a successful collaboration. First of all, there isa very large overhead in starting work in a di�er-ent discipline. The overhead of starting work in-cludes both learning the basics of the science, aswell as overcoming a language and culture gap be-tween �elds. Another di�culty in starting a collab-oration is to have accurate expectations about therole of the collaborators, and to understand how ev-eryone involved can contribute to the goals of theproject. A �nal di�culty is to make sure that theproject is one in which collaboration is possible.There are many computational problems which arealready well solved, so that improved performed isonly a question of accessing greater resources. Inthis case, there may not be computer science prob-lems to solve, so the collaboration may be unwar-ranted. Another issue in collaboration is to ensurethat all members have an opportunity to gain creditfor the work. In the standard academic currency,this means that results of the work have to be pub-lishable. The key issue is where these results will bepublished, since it is critical to be able to publishin ones own �eld.This work is part of the University of Wash-ington project on Astrophysical Simulation. Theproject includes eight faculty members from As-tronomy, Physics, Applied Mathematics and Com-puter Science, as well as four post doctoral researchassociates. The project is currently funded as aNASA HPCC grand challenge project. Although1



www.manaraa.com

the project is only one year old, it has been verysuccessful in building ties between �elds and in es-tablishing a high level of interaction. The projectcenters around the development of several di�er-ent simulation codes, with a strong emphasis onparallel implementation. This paper will stress thecomputer science side of the project and will not dis-cuss the astrophysical problems that will be studiedthrough simulation.3 Astrophysical SimulationParticle simulation is widely used in many scien-ti�c and engineering disciplines, including chem-istry, material science, bioengineering, and mechan-ical engineering. The technique is used to comple-ment experiment and observation. Astrophysicalsimulationgenerally involves following the time evo-lution of a set of particles under gravitational force.The particles often correspond to the aggregation ofa large number of stars. Simulation is particularlyimportant to astrophysics because the time and dis-tance scales involved make many observations di�-cult and experiment impossible. The di�culties inobservation are that it is di�cult to determine thedistance of far away objects such as galaxies, so thatwe essentially have a two-dimensional view, and thetime scales involved are so vast, that we essentiallyonly have a snap shot of the universe, and cannotview objects moving through time.The basic algorithm is to compute the force oneach particle and then advance the particles assum-ing constant force for a small amount of time. Theproblem of computing the force on each particle isgenerally referred to as the N-body problem.1 Inmany applications of simulation, it is necessary touse a very large number of particles to accuratelyre
ect the physics of the problem. The current stateof the art is to perform simulations involving abouttwenty million particles using the largest parallelcomputers. Astrophysicists argue that qualitativelydi�erent problems will be able to be studied if thenumber of particles can be increased by one or twoorders of magnitude.1However, in the case of small N, notably two and three,the N-body problem may refer to the problem of computingthe equations of motions for the bodies. In the case of two,Newton showed that the motion is an ellipse. The problemofcomputing the equations of motion for three bodies appearsto be intractable.

3.1 N-body ProblemThe N-body problem is: given a set of particleswith masses and positions, determine the force uponeach particle, assuming gravitational interaction be-tween particles. Since gravitational force obeys aninverse square law, the problem is to compute thesum: Fi =Xj 6=i gmimjkxi � xjk2cxjiwhere cxji denotes the unit vector from xi to xj.The force on a single particle can be computed inO(n) operations,2 so computing the force on all par-ticles can be done by a straightforward O(n2) timealgorithm.The improvement over an O(n2) algorithm comesfrom computing approximate forces instead of ex-act forces. As we discuss later, the basic method ofapproximation is to aggregate particles and to ap-proximate the e�ect of a collection of particles bya single computation. Although it is important topay attention to the accuracy of the approximation,it is not necessary to evaluate the forces to a veryhigh level of accuracy. The reason for this is thatthere are several other sources of error in the simula-tion process, so that a highly accurate evaluation offorces does not increase the overall accuracy of thesimulation. The integration process is one sourceof error, since forces are assumed constant during atime step. The other major source of error is thata physical system is often represented by a muchsmaller number of particles than it actually con-tains, so each particle in a simulation correspondsto a large number of real particles. This model-ing error is often the factor the limits the utility ofsimulation, and it also motivates the use of largernumbers of particles.3.2 Application of SimulationsMany di�erent problems in astrophysics are ad-dressed by simulations. These simulations can clas-si�ed roughly into two categories, large scale andsmall scale. The distinction is that a large scalesimulation is aimed at understanding the structureof the Universe as a whole, while a small scale simu-lation studies the behavior of a speci�c system. Thetype of problem that is studied by large scale sim-ulation is one such as galactic clustering, where the2We are assuming in�nite precision operations to claiman O(n) bound. Since the simulation algorithms are gener-ally done at a low precision, the issue of solving the N-bodyproblem to a high level of accuracy does not arise.2



www.manaraa.com

major questions include understanding the overalldistribution of galaxies in the universe, and relat-ing internal structure of galaxies to the large scalestructure. Examples of smaller systems which arestudied by simulation include the collision of galax-ies and the mass exchange between orbiting whitedwarf stars[2].One of the key technical challenges in simulationarises from the necessity of using a large number ofparticles. The largest reported simulations (as ofJune, 1992), involve following the evolution of 17million particles over 600 time steps [3]. The simu-lations were performed by Salmon and Warren us-ing the 512 processor Intel Touchstone Delta (i860).The simulations ran in roughly 24 hours. Thesesimulations were very large scale simulations whereeach particle represented over 1010 solar masses,and each time step corresponded to over 10 millionyears. Smaller \routine" simulations run by astro-physicists may involve one million particles and runfor one month on a fast workstation [4].The reason that astrophysical simulations requiresuch a large number of particles to achieve accu-rate results is that the problems involved have avery large dynamic range. This means that interest-ing events simultaneously occur on many di�erentlength scales. The type of problem where di�erentlength scales occur is in looking at galactic cluster-ing. The galaxies are very widely distributed, and itis of interest to be able to see the internal structureas well. This means that there must be a su�cientnumber of particles in each galaxy to allow its fea-tures to emerge, and enough galaxies to model thelarge scale distributional e�ects. It is generally be-lieved that increasing the number of particles by oneor two orders of magnitude will allow qualitativelydi�erent physical problems to be studied.4 N-body AlgorithmsA rich set of methods have been developed whichimprove on the basic n2 algorithm for the N-bodyproblem. Currently, a set of methods, referred toas tree-codes are the most popular for large scalesimulations. These were independently discoveredand developed by a number of researchers.4.1 Analog algorithmThe history of N-body algorithms dates back to atruly remarkable paper published in 1941[5]. In

this paper, Erik Holmberg, a Swedish physicist de-scribed an analog method for N-body simulation.His idea was to replace gravitational force withlight, since both light and gravity obey an inversesquare law.Holmberg was interested in studying tidal distur-bances caused by nebulae passing in close proxim-ity to one another. He dismissed numerical inte-gration as being computationally infeasible. Thespeci�c system that he considered was two nebulae,consisting of 37 bodies each, so a single time stepwould have required computing 2,701 square roots,which would have been a tremendous amount ofwork without a calculator. The experimental sys-tem that Holmberg used was a collection of 74 lightbulbs set up on a board. The light bulbs were re-placed one at a time by a light meter to determinethe forces. By measuring the light intensity in the+x;�x;+y and �y directions the force could bedetermined. Particular care was taken with the ex-perimental set up, for example, special light bulbswere manufactured with a vertical spiral �lamentto ensure that the light was uniform in all direc-tions. The paper also discussed how errors such asre
ected light from the table surface were measuredand dealt with.4.2 Mesh AlgorithmsThe �rst computational method which gave a sub-stantial improvement over direct computation wasto use a mesh[6]. In this method, each particle ismoved to the closest grid point. The force computa-tion becomes a convolution which can be done witha FFT. This reduces the complexity of the compu-tation to M logM where M is the number of gridpoints used. The main drawback to this methodis the grid, which determines the resolution of thesimulation. One of the main characteristics of as-trophysical simulations is that they involve a verynon-uniform distribution of mass so a large rangeof resolution is important. A number of approacheshave been taken to improve upon the mesh algo-rithms, including hybrid methods which use directcomputation for close interactions, and the meshcomputation for long range interaction, and multi-grid techniques which allow varying the mesh size.4.3 Tree-codesThe current method of choice for astrophysical sim-ulation is to approximate the force on each particle3



www.manaraa.com

with the aid of a geometric data structure. Imple-mentations of this method are often referred to astree-codes. The method was independently discov-ered by several researchers. The particular versionthat is most commonly used is the Barnes-Hut al-gorithm [7].The starting point for the tree codes is to use anatural approximation in computing the force. Sup-pose that we want to compute the force exserted bya set of particles S = fp1; : : : ; pkg on a particle x. Ifall of the particles in S are far away from x, then itis natural to replace the set of particles S by a singleparticle located at the center of mass, and assign allof the mass to this particle. A more accurate ap-proximation can be achieved by using a multipoleexpansion around the center of mass instead of justthe single term. One of the important details inthe algorithm is to decide when the particle is suf-�ciently far away so that the approximation can beused.The spatial data structure that is used is a tree,where a set of particles is associated with each of thetree nodes. The data structure obeys the followingthree properties:1. The entire set of particles is associated with theroot.2. The children of a node T represent a partitionof the particles associated with T .3. Each leaf has at most one particle associatedwith it.In principle, any tree that satis�es the propertiescould be used. However, it is important that thetree decomposition re
ects the spatial distributionof particles. Many of the methods that are usedare based upon recursively decomposing space, andassigning all of the particles in a spatial region to atree node.The basic algorithm to compute the force on aparticle p can be expressed as the following recursiveprocedure. We assume that there are subroutinesfor computing the force and testing if the approxi-mation is valid. For clarity of expression the tree isassumed to be binary.Evaluate(p : ParticleType, T : TreeNode)if IsLeaf(T)return ExactForce(p, T);if FarAway(p, T)return ApproxForce(p, T);return Evaluate(p, T.left) + Evaluate(p, T.right)

The simulation algorithm is to compute the forceupon each particle using the routine Evaluate. Therun time to compute the force on a particle is pro-portional to the number of nodes that are expanded.An important aspect of a tree-code is that it relieson performing particle-cluster computations. Wediscuss methods which allow cluster-cluster compu-tations below.Opening criterion One of the important sub-routines of the algorithm is the test as to whetheror not the approximation by a region is su�cientlyaccurate. This is often called the opening criterion,since it is used to decide if a node should be ex-panded. The basic condition for using the approx-imation for the set of particles S to compute theforce on x is that all points in S are far away fromx. The standard way to implement this is to lookat the ratio between the size of S and the distancefrom x to S. In the Barnes-Hut algorithm, eachpoint set is enclosed in a cube. If s is the length ofthe cube side, and r is the distance from x to thecenter of mass of S, the approximation is used ifsr < �, where � is an input parameter that controlsthe accuracy. Many simple variants of this couldbe used, for example, the size of the point set couldbe measured by its diameter (in either the L2 orL1 norms), and the distance to the point set couldbe measured by the distance from x to the bound-ary of S or to the closest point of S instead of tothe center of mass. Salmon and Warren [8] considerother choices including methods which take into ac-count the magnitude of the errors in using variousapproximations.Data Structures There is a tremendous 
exibil-ity in the choice of spatial data structure that couldbe used in the algorithm. To enhance the accuracyof the computation, it is important the the regionshave roughly the same size in all directions. It isalso desirable that the regions chosen re
ect the ge-ometry of the point set. The methods that are incurrent use can be divided into top down structures,which recursively divide the space into regions us-ing planes parallel to the coordinate axes and bot-tom up methods which recursively combine closetogether particles to form clusters.The Barnes-Hut algorithm uses the oct-tree datastructure. The point set is assumed to lie insidea cube. The oct-tree is constructed by recursivelysubdividing the cubes into eight subcubes, splittingat the geometrically central point. The subdivi-4



www.manaraa.com

sion continues until cubes contain fewer than twoparticles. Other data structures, including k � dtrees, used by Appel [9], and fair-split trees, pro-posed by Callahan and Kosaraju [10], choose sepa-rating planes based upon the point set, where thesubdivision does not necessarily create equal sizedregions.The bottom up up approach aims at grouping to-gether points in a way that re
ects the geometry ofthe particles. Independently, Benz et al. [2] andJernigan and Porter [11] gave schemes where closetogether points are combined to form clusters. Al-though these data structures are much less under-stood than the top down approaches, they appearto perform well in practice [12].Performance Although the performance of theparticle-cluster algorithms is generally character-ized as O(n logn), the actual run time does dependupon the distribution of the points. Since the forceon a particle is computed by traversing a tree fromthe top, down to some of the leaves, the tree heightappears in the run time. The height of an oct-treecan be unbounded in terms of the number of parti-cles, since the division into regions does not neces-sarily subdivide the points3.We prove that the run time of the Barnes-Hutalgorithm is related to the average depth of leafnodes. If the tree is balanced, the average depth isO(logn), which gives the O(n logn) bound which isgenerally claimed for the algorithm. The proof isto bound the amount of work done in terms of thecells that are examined. The total leaf depth of atree is the sum over all of the leaves of their depths.Lemma 1 Let x be a particle. The number of cellsof size D encountered when evaluating x is boundedby a constant.Proof: The number of cells of size D encounteredis at most the number of cells which can be directdescendants of cells of size 2D which fail the accu-racy test. Let C be a cell of size 2D, and supposethe distance of the center of mass of C to x is r.C fails the accuracy test if 2Dr > �. The numberof cells which fail the accuracy test is bounded bythe number of disjoint cells of size 2D that can beplaced so that their centers of mass are within dis-tance 2D� of x. This is bounded by the number of3However, in actual simulations the problem of unbal-anced trees is not overwhelming. One reason is that thepathological cases require tremendous precision, so they can-not occur when �xed precision arithmetic is used.

cells of size 2D which can be placed inside a sphereof radius 2D� +2Dp3 which is constant.We also need a related lemma, which bounds howmany times a particular cell can be examined byparticles in larger cells.Lemma 2 Let C be a cell of size D. The numberof particles x located in leaf cells of size D0 > Dwhich encounter C is bounded by a constant.Proof: A particle can only encounter C ifC's par-ent fails the accuracy test. This means that x mustbe within distance 2D� of C. The leaf cells are dis-joint. By a straightforward packing argument, thenumber of cells of size at least 2D within distance2D� is bounded by a constant.Theorem 1 Let T be an oct-tree total leaf depthL. The Barnes-Hut algorithm takes time O(L) oninput T to compute the force on all of the particles.Proof: The two lemmas allow us to account for allof the work. Let x be a particle that is in a leaf cellof size D. We account separately for the work thatx does in looking at cells of size D or greater, andthe work done at looking at cells of size less than D.Suppose that x is at depth k in the tree. The �rstlemma says that O(k) work is done looking at cellsof size at least D. The second lemma says thateach cell is evaluated at most a constant numberof times by particles in larger cells, so this gives alinear amount of work summed over all cells. Thetotal amount of work is thus proportional to thetotal leaf depth.It is of interest to look more carefully at the con-stants. The proof of the �rst lemmagives a constantof 323 � " 1�3 + 3p3�2 + 9� + 3p3# :For large values of �, when � is relatively close toone, the bound is pessimistic. For example, when� = 1, the bound is 683, while a direct bound for� = 1 gives a constant of 216. The bounds makea worst case assumption about the location of thecenter of mass in each cell. If the center of mass isin the center of each cell, then the bound improvesto 64 when � = 1. The large branching factor ofthe tree and the cubic dependence on � cause theconstant to be so large.5



www.manaraa.com

4.4 Fast MultipoleIt is possible to gain a theoretical improvement inN-body algorithms by allowing cluster-cluster ap-proximations instead of just particle-cluster opera-tions. Appel [9] introduced the use of cluster-clusteroperations, and Greengard and Rokhlin [13] showedhow the operations could be used to achieve highaccuracy in linear time.The idea for cluster-cluster evaluations is thatif there are point sets A and B, which are well-separated, then a single force computation can bedone between the sets. Appel's approach was tocompute the acceleration assuming all mass wasconcentrated at the center of mass, and then usethat acceleration for all of the points in each set.The Greengard-Rokhlin method is far more sophis-ticated. In their method they translate the force�eld of B so that it applies to the domain of A. Thisis done by using several Taylor series expansions.Once the acceleration is computed for a region, it ispassed down the tree towards the leaves which cor-respond to the particles. In the Greengard-Rokhlinalgorithm, the values which are passed down thetree are actually functions, which are evaluated atthe particle's position.The run time for the cluster-cluster algorithmsis generally considered to be O(n), however, thisis under some assumptions about the distributionsof the particles. In particular, if the particles arevery highly concentrated, the trees can have a largedepth, which adds additional cost to the algorithm.The basic argument used to establish linear time isto argue that each cell can be involved in only aconstant number of evaluations. This is done witha packing argument that is similar to the lemmasestablished above. If the Greengard-Rokhlin algo-rithm is also parameterized by the output precision,then it is possible to achieve linear time.Although the Greengard-Rokhlin algorithm istheoretically superior to the Barnes-Hut algorithmand the other tree-codes, it is not widely used forastrophysical simulation. The main reason for thisis that the constant factors are large in the algo-rithm, and the equations used in the evaluationare very complicated. In order for the force ap-proximation to be valid, the clusters must satisfya well-separated property, which is that the ratioof the separation and the cell radii must exceed aconstant. In the three dimensional algorithm, toevaluate a cell of size D, all D cells in a cube ofdiameter 9D must be examined, which is 729 cells

[14]. The force evaluation is also very expensive. Intwo dimensions, the coordinates can be representedwith complex numbers, which greatly simpli�es thecomputation of the functions. In three dimensions,a di�erent technique, such as spherical harmonics isnecessary [15].The fast multipole method is well suited for thecase where high accuracy is required. Although ithas large constant factors, additional accuracy isavailable at relatively low cost. However, astrophys-ical simulation generally requires only low accuracy,so the overhead of the fast multipole algorithm lim-its its utility.4.5 High performance computingSince large N-body simulations have such high com-putational demands, they have been natural ap-plications for the most powerful computers. Theinitial implementation on supercomputers were onvector machines. The control structure of the N-body algorithms, made it a substantial challenge toget good performance on machines such as Crays,but eventually vectorized codes were developed.Currently, the main interest in implementation isachieving high performance on large parallel ma-chines. The largest simulations that have beenrun [3] utilized the 512 processors Intel TouchstoneDelta.The N-body problem potentially has a largeamount of work that can be done independentlyand in parallel, especially when the number of par-ticles is much larger than the number of availableprocessors. However, there are a number of prob-lems that must be solved to achieve high e�ciency.The problem that has been the most challenging hasbeen to implement the algorithm on a distributedmemory machine. It is necessary to have methodswhich associate the data with speci�c memories andallow convenient access by other processors. Solv-ing this problem means not only solving the e�-ciency problem on a particular machine, but alsoaddressing implementation and portability issues.A secondary problem to solve is the load balanc-ing problem, which is to make sure that all proces-sors remain active. Both of these problems havebeen addressed in a number of implementations,and good performance has been achieved on sev-eral di�erent machines. Machine utilization of over80% has been reported on hypercubes [16], and onthe Stanford Dash [17].6



www.manaraa.com

4.6 What is left to be done?Physicists desire to perform simulations which areorders of magnitude larger than what is feasible to-day. Today's simulations are limited both in termsof total processing power (the speed and numberof processors), as well as by the available mem-ory. Larger simulations will be enabled by access tolarger and faster machines. However, there is also amajor role that computer scientists can play in mak-ing these large simulations possible. Improved un-derstanding of simulation algorithms will increasecon�dence in results, and will also allow resourcesto be concentrated upon the parts of the simulationwhich are most sensitive in errors. There are op-portunities to improve the performance of the algo-rithms. Even constant factor improvements in thealgorithms will be important in increasing the sizeof problems which can be addressed. Finally, thereare many open computer science problems whichrelate to high performance computing in general.These include problems such as developing meth-ods for portable parallel programs and developingsupport software for scienti�c applications.5 Errors in SimulationThe fundamental concern when working with simu-lation is the degree of correspondence between thesimulation and a real system. There are certainconstraints, such as energy conservation which areeasily checked. These either give con�dence in theaccuracy of a simulation, or establish that the sim-ulation is not correct. It is generally easier to showthat a simulation is incorrect than to establish itscorrectness. If the simulation exhibits any nonphys-ical behavior, then it is necessarily suspect. How-ever, the fact that a simulation gives the expectedresults on test cases, does not guarantee that it willbe correct when applied to new situations.Errors in simulation can be either caused by hav-ing too large a granularity, or can be systematicerrors in the algorithm. Granularity errors includehaving too few particles in the system, having atimestep that is too big, or using an approxima-tion threshold that is too weak. Systematic errorsare a very big concern, since they indicate that themethod is 
awed. In this section three problemsare mentioned which have come up in simulationalgorithms. The reason for discussing these casesis to show the importance of understanding whatthe simulations are computing, as opposed to just

concentrating on the performance of the simulation.5.1 Disk heatingOne problem that was observed in early simulationswas that galaxies gradually disappeared.4 This hasbeen termed the \Disk heating problem", since is iscaused by particles being accelerated and ejected.The problem arises from performing integrationwith respect to the 1r2 gravitational force. Numer-ical integration is performed by treating a force asconstant throughout a timestep. If a particle ispassing close to another one, and if the force is mea-sured when the particles are very close together,then there is a large acceleration, while if the forceis measured at a di�erent point in the trajectory,the acceleration would be much slower. The prob-lem comes from the accidental measurement of veryclose encounters causing large accelerations. To �xthis, the 1r2 gravitational force is \softened", andreplace by another force law, such as 1r2+� for some� > 0. This solution appears to be ad hoc, althoughit does give more accurate simulations.5.2 Error boundsThe error bounds chosen in simulations are sur-prisingly weak. Generally, the parameter � in theBarnes-Hut algorithm is chosen in the range 0.7 to1.0. The accuracy of the force is only guaranteedto be within about 30% of the real force. The forcecomputation is the sum of a number of terms, so iferrors were uniform and independent, then the ac-curacy would increase because of a cancellation oferrors. The errors are not independent, and thereis also conditioning between time steps, so a centrallimit theorem approximation is not valid. It is prob-ably not possible to formally derive a distributionon the errors, although they have been observedto satisfy reasonable statistical properties [12]. Aworst case analysis, which assumes a conspiracy oferrors, yields an overly pessimistic bounded. Moti-vated by the needs to run large simulations, physi-cists will continue to run simulations outside therange where error analysis gives reasonable boundson the accuracy.4Galaxies would disappear in under one billion years ofsimulated time, while real galaxies have existed for ten billionyears.7



www.manaraa.com

5.3 Exploding galaxiesSalmon and Warren [8, 16] have documented a sys-tematic error arising in the Barnes-Hut algorithm.The problem arises when a small galaxy collideswith a larger galaxy. As the smaller galaxy ap-proaches, it loses self gravitation and falls apart.What is especially peculiar is that this occurs whenthe small galaxy approaches at 45 degrees (on theline y = x), but does not occur when it approachesalong the x-axis. This problem was discovered inactual simulation, as opposed to being contrived toshow fault with the algorithm.The problem is a \corner e�ect" that occurs whenthe bulk of the mass is located at the corner of acell, and it depends upon the speci�c opening crite-rion used in the Barnes-Hut algorithm. There aremany ways to solve this problem, such as requir-ing a lower error threshold (� < 1p3) or by modi-fying the opening criterion. The unsettling aspectof this problem is not that it is di�cult to dealwith, but that the problem had been in codes thathad long been used as production codes for astro-physical research. There is no guarantee that thereare no other pathologies in the Barnes-Hut or otheralgorithms which will cause physically incorrect re-sults. It clearly is not possible to develop a set ofbenchmark simulations which are su�cient to vali-date simulation algorithms.6 High Performance Com-putingA major challenge is to make e�ective use of highperformance computers in executing the existing al-gorithms for N-body algorithms. The word e�ectiveis used to indicate a wide range of issues; perfor-mance is of critical importance, while issues suchas ease of implementation and portability betweenmachines are also very important. Researchers areseeking general solutions to many problems in highperformance computing. The N-body problem hasbecome a popular application to study [18] since ithas a less regular structure than many other sci-enti�c applications, and hence requires more gen-eral solution techniques. (One concern about thecomputer science work that uses the N-body prob-lem as a benchmark is that it is concentrating onthe Barnes-Hut algorithm. N-body algorithms areevolving to have less regularity than Barnes-Hut,so solutions proposed might not be su�ciently gen-

eral. It is important for Computer Scientists to keepabreast of the advances of simulation algorithms.)6.1 ParallelizationThere are currently a range of di�erent architec-tures used for high performance computers. Someof the issues in parallelization di�er between classesof machine. Researchers are seeking solutions tothese problems that apply to as wide a range ofmachines as possible.The instances of the N-body problem that arisein astrophysics generally provide a large amount ofwork that can be done in parallel, so the problemis to take advantage of existing parallel work wasopposed to �nding a new algorithm with enoughparallelism. In current algorithms, almost all of thework is done in actual force computation with con-struction of the tree data structure being only asmall amount of the work. (Salmon [16] gives thecost of tree construction as only 2% of the sequen-tial run time.) The load balancing problem is toassign the particles to the processors, so that eachprocessor performs approximately the same amountof work. This can be done in either a static ora dynamic manner, where a static method dividesthe work before the computation and a dynamicmethod can reallocate work to keep all processorsbusy. Static schemes that have been used for theN-body problem include a top down method, Or-thogonal Recursive Bisection [16] and a bottom upmethod, Costzones [19]. One idea that works wellin load balancing is to keep track of the amount ofwork per particle done in each time step, and useit as an estimate of the work when load balancingis done. The load balancing problem is relativelywell solved for current N-body algorithms, so thecurrent challenges are to develop general methodswhich apply to large classes of applications.A second problem in parallelization is to assignthe data structure to memory. The characteristicsof this problem depend strongly upon the type ofmachine that is being considered. If the machine isa distributed memory machine, then the problem isto choose where the data goes to minimize commu-nication costs. On the other hand if the machine isa shared memory machine, where memory manage-ment is not under user control, the problem is toensure that the memory system can take advantageof data locality to achieve reasonable performance.In the N-body problem, the key is to map the spa-tial decomposition tree to memory. The problems8



www.manaraa.com

include making sure that each particle has accessto all relevant portions of the tree, and determiningwhich processor is responsible for updating each ofthe tree nodes.One direction of research is to develop systemlevel solutions to problems such as load balancingand memorymapping instead of user level solutions.Reasons for doing this include a desire to avoid solv-ing the problem for each application, a system levelsolution could interact with other system level func-tions, such as job scheduling, and a system level so-lutions could use facilities not normally available atuser level.6.2 AbstractionThe sequential version of the Barnes-Hut algorithmis elegantly expressed in terms of tree traversal.This leads to convenient implementation in lan-guages which support pointer manipulation.5 How-ever the sequential abstractions are not su�cientfor parallel implementation, especially when a mes-sage passing machine is in use. The most di�cultproblem is to ensure that each processor has accessto all necessary parts of the tree. This is a verydi�cult implementation problem. For example, thesolution to this problem was the most complicatedpart of the Salmon implementation [16]. The prob-lem is easily solved on a shared memory machine[17]. This speci�c example is used by proponentsof shared memory in the on going discussion of therelative merits of shared memory versus messagepassing.A major step in developing abstractions for treecodes on message passing machines was taken byBhatt et al. [20]. They propose a pair of abstrac-tions, Traverse and Deliver, which lead to a conciseimplementation of the Barnes-Hut algorithm. Thekey mechanism is to de�ne a tree traversal whichprompts the delivery of messages to the originatingprocessors. This type of implementation requires li-brary routines to be written which support messagepassing and parallelism. The user is not exposedto any of the details of the machine. There arevery strong arguments for this style of implementa-tion based upon software engineering considerationssuch as portability, extensibility, and ease of main-tenance. The one weakness of the Bhatt abstractionis that it was designed strictly for the Barnes-Hut5Astrophysical simulation is a domain where scienti�cprogrammers have abandoned FORTRAN with a preferencefor C.

algorithm . It is not clear if it is su�cient for neweralgorithms which have di�erent strategies for nodeexpansion, or allow di�erent time scales.6.3 PortabilityA very general and di�cult problem is to developmethodologies and support software which allowsprograms to be moved between di�erent parallelmachines. It is essential that methods for portingprograms pay very close attention to the e�ciencyof the resulting program. There are several ongoinge�orts, such as the Orca Project at University ofWashington [21, 22] which are developing systemswhich apply to various classes of scienti�c applica-tions. Again, the control structure of the N-bodyalgorithms make them a very interesting type of ap-plication to study.7 AlgorithmsThe most signi�cant improvements in the perfor-mance of N-body algorithms have come throughalgorithmic innovations, and there are still manysources of potential improvement. Algorithmic re-search in the N-body problem aims at both �ndingfaster algorithms as well as gaining a better under-standing of existing algorithms.The key algorithmic problems turn out to be incomputational geometry and data structures as op-posed to being in parallel computation. The reasonfor this is that N-body algorithms generally haveenough inherent parallelism that it is easy to �ndenough parallel work to achieve high utilization oftoday's parallel machines. For example, solving aproblem with N = 1; 000; 000 on a one thousandprocessor machine gives an adequate grain size forcurrent machines. If machine sizes were to increasesubstantially, and problem size were not to increase,then parallel algorithms issues would become moreimportant.7.1 Spatial Data StructuresThe central part of a particle-cluster tree code isthe geometric data structure which drives the 
owof control and determines the approximation. Thesealgorithms must take 
(n logn) time, so the goal isto improve the constant factors. The constant fac-tors are large enough that there is ample room forimprovement, and these codes use su�cient compu-tational resources that even modest improvements9



www.manaraa.com

in the size of the constants would be of signi�cantpractical importance. Almost all of the work is inthe force computation, so we want to �nd a datastructure which reduces the number of node evalu-ations. In the current algorithms, tree constructionis a very small amount of the run time. This meansthat a more complicated tree construction strategymay be practical if it succeeds in reducing the num-ber of force computations.The majority of N-body algorithms use a spatialdecomposition that is derived from a subdivision oforthogonal planes. One of the simplest schemes isthe oct-tree which is used in the Barnes-Hut algo-rithm. This partition scheme is oblivious to anystructure that the data might have, for example,a separating plane might pass directly through atightly packed cluster. It is very likely that otherdecomposition could yield better performance. Theconstant factor in the Barnes-Hut algorithm is mod-erately large. It is determined by the number ofcubical cells which intersect a �xed radius spherein three dimensions. This number turns out to bealarmingly big. Cubes are not the optimal shapeof a �xed volume cell when attempting to minimizeintersections with a sphere, so it is conceivable thata di�erent tiling would give a better result.There are many di�erent directions to explorein modifying the Barnes-Hut algorithm to improvethe constant factors. These problems could be ad-dressed both analytically as well as experimentally.1. Determine the constant factor in the Barnes-Hut algorithm (as a function of �). This couldbe done with respect to the average case as wellas to the worst case.2. Can better data structures be constructed us-ing arbitrary planes, instead of restricting at-tention to orthogonal planes?3. Does the use of bounding boxes which are tightagainst the data improve oct-tree behavior?4. Can a data structure which splits the pointsroughly evenly, and achieves a guaranteedO(logn) depth improve the algorithm's perfor-mance?5. Is the high branching factor a detriment to theoct-tree based algorithm? Can a binary treelead to fewer comparisons?6. Can the theory of geometric separators [23] beused to build better trees?

7.2 Nearest Neighbor TreesAn alternative to the top down approach is to buildthe tree bottom up by combining close together par-ticles. This method was independently proposed byBenz et al. [2] and by Jernigan and Porter [11].This method appears to be competitive with thetop down approaches [12].We de�ne a nearest neighbor tree to be a tree thatis formed by repeatedly collapsing mutually nearestneighbors6 until a single point is left. This naturallygives a binary tree. We give an algorithmic de�ni-tion, which gives substantial 
exibility in how thetree is constructed. A tree is a nearest neighbortree for a point set if it can be constructed by thefollowing algorithm. Ti denotes a tree which hascoordinates associated with its root.Collapse(S = fT1; T2; : : : ; TN )if N = 1 then returnLet hTi1 ; Ti2 i; hTi3 ; Ti4 i; : : : hTi2k�1 ; Ti2k i be mutuallyclosest pairs.for j := 1 to kReplace Ti2j�1 , Ti2j by a node with coordinatescorresponding to their combined center of massand with Ti2j�1 , Ti2j as its children. Update theset S.Collapse(S).The nondeterministic choice in which mutuallynearest neighbors are merged allows a wide rangeof trees to be constructed. The choices can be re-stricted to get smaller families of trees. For exam-ple, the choice could be restricted to the globallyclosest pair. This would make the algorithm de-terministic, and also would make it easier to provestructural theorems about the trees. However, itcould make the trees more di�cult to construct,and would certainly make parallel construction ofthe trees harder. A weaker restriction would be toonly combine a single pair of trees. This gives asmaller class of trees, but is a fairly natural restric-tion. We shall use the general de�nition here. Itincludes the classes of trees used by Benz and byJernigan and Porter. Many generalization of thisde�nition are possible, such as allowing several sev-eral trees to be combined instead of just pairs oftrees. We defer the generalization until we have abetter understanding of the pairwise combination.6A pair of points x and y are mutually nearest neighborsif x is a nearest neighbor of y and y is a nearest neighbor ofx. Any point set has at least one pair of mutually nearestneighbors.10



www.manaraa.com

The nearest neighbor scheme appears to workwell in practice. The motivation for the data struc-ture is that it should adapt to the structure of thepoint set, and should put clusters in the same sub-tree. The intuition and observed behavior is thatthe trees have low depth. The following heuristicarguments suggest that the trees should have smalldepth.Pseudo-theorem 1.1 A nearest neighbor tree onn points has O(logn) height.Argument 1: If points are randomly distributedthan a constant fraction of the points will be in-volved in mutual nearest neighbor pairs. These canbe collapsed, reducing the number of pairs by a con-stant fraction, leading to logarithmic depth. [11]Argument 2: Let � denote the distance from pto its nearest neighbor. Suppose p is merged withall points within a radius of 2�. The nearest neigh-bor distance of the resulting point will be a least2�. The point p can be involved in at most a con-stant number of mergers within this radius. Sincethe nearest neighbor distance doubles, the height islogarithmic.Both of these arguments have several holes, how-ever, they do provide intuition as to why the treesshould be shallow. First of all, there should be alarge number of independent nearest neighbor pairs,and second of all, as particles are merged, the near-est neighbor distance should increase exponentially.The conjecture of logarithmic height is false, sincein common with the oct-tree structure, there aredistributions of points which give linear depth. Thebad case again is when points have exponentiallyincreasing separations, for example, if point pi hadcoordinates (0; 0; 2i). If the masses are allowed to beof exponential size, then trees of linear height canbe constructed even if the positions are boundedby a polynomial. However, the cases with an ex-ponential range of masses or positions are not ofmuch interest. It would be of interest to prove thatthe tree height was logarithmic if the positions andmasses were polynomially bounder, or to establish alogarithmic dependence on position and maximummass. We believe that the following conjecture istrue:Conjecture 1.1 Let � denote the ratio between themaximum and minimum separation of points, andlet M denote the total mass of the system. Theheight of any nearest neighbor tree is O(log � +logM ).

This conjecture is turning out to be remarkablydi�cult to prove. To establish that nearest neigh-bor trees are good for simulation, we would like toprove the following:Conjecture 1.2 Let T be a near neighbor tree withtotal leaf depth L. The approximate n-body problemcan be solved in O(L) time using T .The reason that this conjecture is not obviouslytrue is the the regions represented by the nodes arenot necessarily disjoint, so the lemmas used for oct-trees do not apply directly.Dimension one We have only succeeded in es-tablishing the �rst conjecture for some very simplecases. We can prove that it holds in one dimension.Lemma 3 Let p1; p2; : : : ; pn be n points on a line.Let � denote the ratio between the maximum andminimum separation of points, and let M denotethe total mass of the system. The height of anynearest neighbor tree is O(log � + logM ).Proof: The advantage of having points in a lineis that it is easy to characterize the intermediatenodes. Each intermediate node is the center of massof an interval of points. Each intermediate node hasa mass, a distance to its left and right neighbors.Consider a path from a leaf to the root in the tree.The distances to the left and right neighbors andthe mass increase as we move up the tree. We arguethat at least one of these quantities increases by afactor of at least 32 . Suppose we are at a node p0which is merged with p00 to form p̂, and without lossof generality, p0 is to the left of p00. If the mass ofp00 is greater than the mass of p0, then the mass ofp̂ is at least twice the mass of p0. Otherwise, p̂ islocated close to p0 than to p00 and the distance fromp̂ to its right neighbor is at least 32 the distancefrom p0 to p00. This allows us to bound the heightby 2 log3=2 � + logM .We can generalize the result to a set of n pointswhich lie on the radius of the circle. The key forthe result on the circle is to show that each of theintermediate points formed is the center of mass of aset of adjacent points along the radius of the circle.The fact that the intermediate points correspond toarcs provides enough structure that the result canbe proved.11



www.manaraa.com

Higher dimensions Unfortunately, the ap-proach used in the one-dimensional case does notgeneralize to higher dimensions. For example, theproof depends upon the distance of a point to itsnearest neighbor being non-decreasing. However,this is not always true, even in two dimensions.Suppose a point p at the origin has neighbors at(�12 ; p32 ) and (12 ; p32 ). The three points form anequilateral triangle with side length one. Assum-ing that the neighbors of p have equal weight, whenthey are merged they give a point at (0; p32 ), de-creasing the distance from p to its nearest neigh-bor. In looking at related examples, it is possibleto merge points to get a point that has distanceslightly less than p32 to p. It is natural to ask howclose is it possible to get a point to p, where p is sit-uated at the origin, and initially there are no otherpoints in the unit circle. It appears that solving thiswill be a major step towards proving the earlier con-jectures. We conjecture that it is not possible to getan induced point within a distance of 12 of p, butgive a weaker version of the conjecture.Conjecture 1.3 Suppose that there are no pointswithin a distance of one of the point p. There existsan � > 0 such that no point can get closer than � ofp as long as p is not merged with any points.The importance of this conjecture is that it seemsto be a step in bounding the number of times apoint can merge with other points, and also suggestsa way of showing that after some �xed number ofmerges, the point free neighborhood of a point mustincrease.Constructing nearest neighbor trees Wehave not considered the problem of how to buildthe nearest neighbor tree. Since the problem of�nding a nearest neighbor pair in a point set canbe solved in O(n logn) time[24, 25, 10], there is anO(n2 logn) algorithm for the problem. It is verylikely that the result can be improved to O(n logn)time. The parallel complexity is also of interest.There is not an obvious NC algorithm for the prob-lem, even if the tree height is logarithmic. Sincethere are optimal bounds for nearest neighbors [26],it is likely that highly e�cient parallel algorithmsexist for constructing nearest neighbor trees.7.3 Simulation AlgorithmsThe work on simulation has generally concentratedon getting a good solution to the N-body problem.

However, the real problem of interest is to per-form an accurate simulation over a moderately largenumber of time steps as opposed to just quicklyand accurately evaluating forces at a single point intime. There are advantages in preserving informa-tion across time steps as well as in weakening thede�nition of time steps.A simulation will have a very strong correlationbetween time steps. It is possible to take advan-tage of this in many ways. The correlation can beused in a parallel implementation to improve loadbalancing and to reduce memory access costs. Forload balancing, it is often useful to use the executiontime for a particle on the previous time step as anestimate of its execution time on the current timestep. Memory behavior can be improved by relyingon caching (either by the hardware, or in software)to increase locality across time steps. This can beachieved if processor allocation does not change dra-matically between time steps. Another use of thecorrelation between time steps is to use an incre-mental data structure for the spatial decompositiontree instead of rebuilding from scratch. The im-plementation of Appel [9] and Jernigan and Porter[11] use incremental data structures. In some cases,such as oct-trees, the data structure constructionis so e�cient that it is not necessary to use an in-cremental version. The advantage of incrementalstructures is that they give an opportunity to re-duce the cost of using a more complicated spatialdata structure.Another reason to look at simulation as opposedto just the N-body computation is to considerschemes which use di�erent time scales. When inte-gration is performed, it is useful to be able to adaptthe time step to the rate of change of the function.In particle simulation, accuracy can be increasedby using a smaller timestep for closer interactionsthan for far away interactions. This can be im-plemented by only traversing a portion of the treeduring some time steps. The algorithm then be-comes asynchronous since updates proceed at dif-ferent rates. The use of variable time steps alsoimpacts the choice of data structure.The use of variable time steps has been intro-duced into a few astrophysical codes although thetechnique is not widely used. In order to take ad-vantage of variable time steps, it will be necessary todevelop general techniques which allow them to beincorporated into simulation algorithms, and also togain a formal understanding of how they work. Thetheory of simulation under variable time steps is not12



www.manaraa.com

well developed, in fact, it is di�cult to give a precisestatement of the problem to be solved. The problemthat the physicists want to solve is \Given a �nite(but hopefully large) amount of computer time, per-form as accurate a simulation as possible". Naturalways to study this problem are to �x several of theparameters, and then express a solution in terms ofone or two variables. For the general problem, it isnatural to treat the number of particles, the totaltime period, and the error threshold as variables. Aforce evaluation is to approximate the gravitationalinteraction between two sets of particles given theirpositions at some point in time. The general sim-ulation problem can be expressed as \Given N , Tand �, �nd a set of force evaluations such that thesimulation of the N particles over T units of time iswithin � of the motion of the particles under exact,continuous forces." It would be necessary to de�nea measure of the solution being close to the exactsolution, as well giving a measure of cost for theforce evaluations. Thus, the �nal open problem, isto �nd the best algorithm!8 ConclusionThere are a large number of interesting computerscience problems that are motivated by astrophys-ical simulation. These include problems rangingfrom how to design easily portable scienti�c codesto challenging problems in computational geome-try. These problems cannot be addressed by com-puter scientists alone, since physical scientists havea key role in problem formation and in the evalu-ation of solutions. The aim of this paper was togive an example of an area where collaboration be-tween computer science and an application domainis likely to yield many interesting results. The hopeis to attract computer scientists to look into theseproblems as well as to encourage computer scien-tists to look for other problem domains arising outof scienti�c and engineering applications.References[1] J. Hartmanis and Herbert Lin, editors. Com-puting the Future. National Academy Press,Washington, DC, 1992.[2] W. Benz, R. L. Bowers, A. G. W. Cameron,and W. H. Press. Dynamic mass exchange indoubly degenerate binaries. I. 0.9 and 1.2 M�

stars. The Astrophysical Journal, 348:647{667,1990.[3] J. K. Salmon and M. S. Warren. Astrophysicaln-body simulations using hierarchical tree datastructures. In Supercomputing, pages 570{576,1992.[4] R. Carlberg, 1993. Personal Communication.[5] E. Holmberg. On the clustering tendenciesamong the nebulae. II. a study of encountersbetween laboratory models of stellar systemsby a new integration procedure. The Astro-physical Journal, 94(3):385{395, 1941.[6] R.W. Hockney and J. W. Eastwood. ComputerSimulation Using Particles. Adam Hilger,1988.[7] J. E. Barnes and P. Hut. A hierarchicalo(n logn) force-calculation algorithm. Nature,324:446{449, 1986.[8] J. K. Salmon and M. S. Warren. Skeletonsfrom the treecode closet. Technical report, LosAlamos National Laboratory, 1992.[9] A. W. Appel. An e�cient program for many-body simulation. SIAM Journal of Scienti�cand Statistical Computing, 6:85{103, 1985.[10] P. B. Callahan and S. R. Kosaraju. A de-composition of multi-dimensional point-setswith applications to k-nearest-neighbors andn-body potential �elds. In Proceedings of the24th ACM Symposium on Theory of Computa-tion, pages 546{555, 1992.[11] J. G. Jernigan and D. H. Porter. A tree codewith logarithmic reduction of force terms, hi-erarchical regularization of all variables andexplicit accuracy controls. The AstrophysicalJournal Supplement, 71:871, 1989.[12] J. Makino. Comparison of two di�erent treealgorithms. The Journal of ComputationalPhysics, 88:393, 1990.[13] L. Greengard and V. Rokhlin. A fast algorithmfor particle simulations. Journal of Computa-tional Physics, 73:325{348, 1987.[14] L. Greengard. The Rapid Evaluation of Po-tential Fields in Particle Systems. PhD thesis,Yale University, 1987.13



www.manaraa.com

[15] F. Zhao. An O(n) algorithm for three-dimensional n-body simulations. Master'sthesis, Massachusetts Institute of Technology,1987.[16] J. K. Salmon. Parallel Hierarchical N-bodyMethods. PhD thesis, California Institute ofTechnology, 1990.[17] J. P. Singh. Parallel Hierarchical N-body Meth-ods and Their Implications for Multiprocessors.PhD thesis, Stanford University, 1993. Com-puter Systems Laboratory Technical ReportCSL-TR-93-565.[18] J. P. Singh, W-D. Weber, and A. Gupta.SPLASH: Stanford parallel applications forshared memory. Computer Architecture News,20(1):5{44, 1992.[19] J. P. Singh, C. Holt, T. Totsuka, A. Gupta,and J. L Hennessy. Load balancing and datalocality in hierarchical N-body methods. Tech-nical Report CSL-TR-92-505, Stanford Univer-sity, 1992. To appear in Journal of Parallel andDistributed Computing.[20] S. Bhatt, M. Chen, C-Y. Lin, and P. Liu. Ab-stractions for parallel n-body simulations. InSupercomputing, 1992. Reference needs to beveri�ed.[21] Calvin Lin and Lawrence Snyder. A portableimplementation of SIMPLE. InternationalJournal of Parallel Processing, 20(5):363{401,1991.[22] Lawrence Snyder. Foundations of practicalparallel programming languages. In Proceed-ings of the Second International Conference ofthe Austrian Center for Parallel Computation.Springer-Verlag, 1993.[23] G. L. Miller and W. Thurston. Separators intwo or three dimensions. In Proceedings of the22nd ACM Symposium on Theory of Compu-tation, pages 300{307, 1990.[24] K. Clarkson. Fast algorithms for the all-nearest-neighbors problem. In 24th Symposiumon Foundations of Computer Science, pages226{232, 1983.[25] P. M. Vaidya. An optimal algorithm for theall-nearest-neighbors problem. In 27th Sym-posium on Foundations of Computer Science,pages 117{122, 1986.

[26] P. B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair decom-position. In 34th Symposium on Foundationsof Computer Science, 1993.

14


